|
这种情况与第一陈类小于和等于零的情形形成了鲜明的对比,这两类流形包含比法诺流形丰富得多的例子,而由于丘成桐证明的卡拉比猜想,在这些流形的研究中,微分几何的方法和工具更强大也更有效。这里我们还要注意到,正如唐纳森等人在他们的文章中所阐述的,K-稳定性并不是一个容易验证的条件,其实用性也与丘成桐所证明的卡拉比猜想相差甚远。目前他们所证明的丘成桐猜想唯一有意思的推论还是丘成桐所指出的,K-稳定形可以推出切丛的稳定性。所以即使K-稳定性等价于Kahler-Einstein度量的存在性的猜想得到证明,其重要性也需要在日后的应用中才能得到检验。而丘成桐本人则在勾画了他的猜想的证明纲领后,便将题目交给了他的学生和朋友,一方面他认为他的猜想虽然重要,但与他证明的卡拉比猜想相比还是有很大的距离,另一方面他认为弦理论引发的数学问题要比他自己的猜想更具挑战性,也有更大的潜力。事实上,他和他的学生与博士后在Calabi-Yau流形上的工作已经在近代数学中开创了一个新的重要研究方向。至于丘成桐猜想证明的正确性和其在几何学中的前景,只有他这个开创者和专家才有资格来评判了。
当然,卡拉比猜想只是丘成桐众多数学成就的一部分。1978年受邀在国际数学家大会作大会报告时,他29岁。1983年获得数学界最高奖,菲尔兹奖时,他34岁。特别要说明的是那个时候他持香港护照,还是中国公民。他也一直以此为豪。1983年12月22日,当时的中共中央总书记胡耀邦在中南海亲切会见了为祖国争得荣誉的丘成桐教授。此后他几乎囊括了这个世界上一个数学家所能得到最高荣誉,包括沃尔夫奖、克拉福德奖和美国国家科学奖章。然而卡拉比猜想的证明毫无疑问是他数学事业中最为绚丽的篇章,它承载了无数数学家60年的光荣与梦想,造就了几何分析40载的传奇与辉煌。
“落花人独立,微雨燕双飞”,这是丘成桐描述自己证明了卡拉比猜想时的心情所用的诗句。从那一刻起,丘成桐一跃而成为一个伟大的数学领袖,领导了几何学近四十年的辉煌,他代表了数学与超弦理论的一个时代。正如《纽约时报》所言:他是当之无愧的数学皇帝。
|